Scratch Simulations

of the
Thymio Robot

Moti Ben-Ari

Version 1.1 for

Aseba 1.4
Scratch 2.0

© 2015 by Moti Ben-Ari.

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Un-
ported License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-sa/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain

View, California, 94041, USA.

http://www.weizmann.ac.il/sci-tea/benari/
https://aseba.wikidot.com/en:downloadinstall
https://scratch.mit.edu/
http://www.weizmann.ac.il/sci-tea/benari/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

Contents

Preface

1

Programming with Events
Moving Sprites
Defining New Blocks

Variables

Guided Projects

Braitenberg Creatures

A Implementation

10

12

17

22

25

Preface

VPL and Scratch

VPL is a visual programming environment for the Thymio robot (Figure 1(a)). Scratch
(Figure 1(b)) is a web-based visual programming environment that animates sprites on
the computer screen. The two environments have similar features: a program is created
by dragging-and-dropping blocks onto the screen, and the fundamental programming
construct is the event handler. Knowledge of one environment can be helpful in learning
a second environment: we take a program written in the first environment and show
how it can be written in the second. This is based on the educational theory called
mediated transfer; see the Wikipedia article on Transfer of learning and the references by
Salomon and Perkins cited there.

= ;m ,mwg; O 3 E.E . i:-; &
- m g ﬁj e
I [- I ! ~i gm ="
s || m % ; =
Qu I ow I m =
(a) VPL (b) Scratch

Figure 1: VPL and Scratch

Chapters 1-5 are about transfer from VPL to Scratch. We take programs from the VPL
tutorial First Steps in Robotics with the Thymio-II Robot and the Aseba/VPL Environment
(https://aseba.wikidot.com/en:thymioprogram) and show how to implement them as Scratch
programs controlling a sprite that is an image of the Thymio robot.

Chapter 6 is intended for students with a good knowledge of Scratch who are learning
VPL. The projects from Chapter 12 of the VPL tutorial on Braitenberg creatures have
been implemented in Scratch.

References

The document is not intended as a tutorial on Scratch, but rather as a collection of
projects that can be used when learning Scratch. For an introduction to Scratch, I
recommend Computer Science Concepts in Scratch by Michal Armoni and Moti Ben-Ari,
which can be downloaded for free at http://stwww.weizmann.ac.il/g-cs/scratch/scratch_en.html.

https://en.wikipedia.org/wiki/Transfer_of_learning
https://aseba.wikidot.com/en:thymioprogram
http://stwww.weizmann.ac.il/g-cs/scratch/scratch_en.html

The projects are arranged in increasing complexity of the Scratch implementation, not
in the order they appear in the VPL tutorial.

The Scratch projects described here can be found in my Thymio studio on the Scratch
website (http://scratch.mit.edu/studios/1023692), except for the projects on the Braintenberg
creatures which are in a separate studtio (https://scratch.mit.edu/studios/1452106).

For other robotics-related Scratch projects, see my website or my Robotics studio
(http://scratch.mit.edu/studios/520857).

On the implementation

Aside from the obvious difference between the concrete Thymio robot and its image
on the Scratch stage, the main difference between the robotic projects and the Scratch
projects is how the sensors are implemented in Scratch. Full details of the implementa-
tion are given in Appendix A, but it is not necessary to understand them, since a set of
abstractions has been introduced and they will be described as they are introduced in
the projects.

¢ A sprite called Pointer is used to sense where the mouse is clicked. It broadcasts
the messages center, front, back, left, right to simulate touching the buttons.

e The new block [PESTE s t="4 returns in the variable) the
direction from the Thymio sprite to the point where the mouse was clicked.

¢ The new block EESEiasl returns in the variable) an indication if
the left or right ground sensors are touching a black tape, or if both sensors or
neither sensor are touching the tape.

The following costumes are used:

¢ The Thymio sprite is colored violet to make it stand out on the stage. You can
change this color if you like. The buttons are colored and these colors should not
be changed.

* Five costumes (blank, red, green, blue, yellow) simulate the top lights.

* The costume ground simulates the ground sensors.

http://scratch.mit.edu/studios/1023692
https://scratch.mit.edu/studios/1452106
http://scratch.mit.edu/studios/520857

Chapter 1

Programming with Events

Events

Scratch project: tap-on-off

In VPL an instruction consists of an event block followed by one or more action blocks:

AN -
N
A

Each time the event occurs, the actions associated with the event are performed. Here,

when the front button of the robot is touched, the top light is turned on with color red,
and when the back button is touched, the light becomes blue.

In Scratch, the construction equivalent to an event-actions pair is the script:

switch costume to blank

when b key pressed
switch costume to blue

The image shows three scripts, each of which changes the costume of the sprite:

¢ Scratch programs are started by clicking on the green flag above the stage. When
the green flag is clicked, the costume of the sprite is set to the blank costume,
which displays the Thymio with the top lights off.

3

¢ The second script responds to the event of pressing the r key. The costume is
changed to the red costume which displays the top lights in red.

e Similarly, the third script turns the lights blue when the b key is pressed.

The Events palette contains the event blocks which are colored brown. Most of these
blocks have a “hat” shape to indicate that they can only be the first block in a script.
After an initial event block, other blocks can be added to the script.

Costumes

A sprite can have one or more costumes which specify how the sprite is displayed on
the stage. The sprite’s costumes are displayed when you click the Costumes tab. You
can create costumes by importing images, or by drawing or editing them using a paint
program that is included in Scratch.

¢ The costumes for this project
The project thymio-costumes contains all the costumes used in these projects.
Open this project and copy (drag and drop) the costumes you need to your
Backpack. Now open a new project and copy the costumes to the sprites.

¢¢ Setting the size of the costumes
You may have to adjust the size of the image of the sprites in order for a
project to work. You can do this by shrinking a costume in the paint program:
click on the icon and then on the image. A better solution is to use
the block EEE=EH . B from the Looks palette in the initialization of a

program; experiment with different values until you have the size the need.

Sending and receiving messages

Scratch project: colors

Let us look now at the program colors which changes the color of the top lights
according to which button is touched (Figure 1.1). In Scratch, touching a button is
simulated by clicking on the image of a button. The click is interpreted by a second
sprite called Pointer, which sends a message to the Thymio sprite, depending on which
image is clicked: center, front, back, left, right.

Click on the Pointer sprite in the sprite area in the lower left of the Scratch win-
dow. Without going into detail, just notice that the second script uses the block
, which causes a message (here, front) to be sent. Now, click

back on the Thymio sprite and you will see the scripts in Figure 1.1. Scripts starting with

when diicked

switch costume to blank

when I receive front

switch costume to red

when I receive right

switch costume to yellow

when I receive back
switch costume to blue

when I receive left

switch costume to green

when I receive center

switch costume to blank

Figure 1.1: Changing colors using messages

the event block are performed when the corresponding message is
received. We see that different messages cause the costume of the Thymio to be changed
to ones displaying different colors.

Sounds

Scratch project: bells

The VPL project bells caused notes to be played when the buttons are touched. In
Scratch, the Sound palette contains a rich set of blocks for playing notes. Experiment
with these blocks and then replace the blocks that change costumes in the above project
with blocks that play different sounds when different buttons are clicked. You can also
add sound blocks to the script in Figure 1.1, so that the sprite both changes colors and
plays sounds.

Chapter 2

Moving Sprites

Scratch project: moving

In the project moving, the robot moves forwards and backwards when the front and
back buttons are touched, and it stops when the center button is touched. In Scratch, a
sprite will move on the screen in response to running blocks from the Motion palette.

The following script initializes the sprite to start at the left side of the stage, pointing
right (90°):

The size of the stage is from —240 to 240 pixels (picture elements) in the x (horizontal)
direction and —180 to 180 pixels in the y (vertical) direction. You can explore these
values by moving your mouse around the stage; its position is displayed below the
lower right corner of the stage. The initial position of the Thymio sprite is set to (—100,0),
so that it is at the left edge of the stage and centered vertically.

The sprite runs the following script when it receives the message front that is broadcast
when the front button is clicked:

ver |

The block e et is contained withina = [block that causes the instruc-

tion to be run repeatedly. This will cause the sprite to move steadily in the direction it

is pointing.

The g0z | block causes the program to wait 0.3 seconds before continuing with
the next block. This slows down the movement and makes it easier to click on a button.

The script for responding to the back message is the same as that for the front message,
except that the sprite is made to point left (—90°):

when I receive back

When the center message is received, all the scripts in the program are stopped:

& Warning!
Turning the sprite to move in the direction —90° will also cause the image of
the sprite to turn 180°. To prevent this, select the Thymio sprite icon in the
area below the stage and click on the small i in the icon. Then click on the
dot which is one of the options in rotation style.

Directions

Scratch project: obeys

The Thymio can behave like a pet, following you around. In project obeys, click the
mouse closer and closer to the center sensor on the image of the Thymio sprite. When it
is close enough, the red light on the sensor turns on and the robot moves towards the
pointer, stopping when it is close.

Initialize the project as in moving adding the block . The main
script for this project is shown in Figure 2.1. The script starts running when it receives
the message Come, which is sent by the Pointer sprite when the mouse is clicked.

Distance to a sprite

The robot moves only when it detects that the pointer is close. The sprite Pointer tracks
the mouse pointer. The block returns the distance in pixels from
the sprite that runs it—here the Thymio sprite—to the Pointer sprite. The block can be
found in the Sensing palette.

when I receive Come
distance to Pointer = & then

get-pointer—direction

if

switch costume to center
L3
point towards Pointer

repeat until distance to Pointer

I move 9 steps

Figure 2.1: Move towards an object near the center sensor

Next, we compare this distance with the distance 250 that we decide is “close” enough
to be detected. In the palette Operators you can find mathematical operators for

performing comparisons: (TN)

The block with comparison operator is a condition block. The if block E

has an angular area for a condition block and a “mouth” in which you can place other
blocks. The meaning of the if-block is:

if the condition is true then
the blocks contained in the "mouth" are run.

It follows that the rest of the blocks in the script in Figure 2.1 will be run only when the
Pointer sprite is close to the Thymio sprite.

Direction to a sprite

The specification requires that the Thymio respond only if the pointer is detected in
front of the center sensor. This is implemented by calling the block
which returns in the direction of the Pointer from the front of the
Thymio sprite. Its value is in degrees in the range 0 to 360, clockwise; that is, directions
just to the right of the Thymio will have low values, while directions just to the left of
the Thymio will have values close to 360. We decide that the Pointer is detected by the
center sensor if the direction is greater than 325 or less than 25.

¢¢ User-defined blocks

and are not predefined in Scratch. The
implementation of these blocks is described in Appendix A, but you can use
the blocks without understanding the implementation.

A second if-block is used to run blocks only when the direction to the Pointer is greater
than 325 or less than 25. The Operators palette contains the operator S which
enables us to combine the two conditions into one. The result is a compound condition
that is true if either of its parts is true.

If the compound condition is true, we turn the Thymio to face the Pointer sprite using

the block from the Motions palette, and we change the costume
so that the red light next to the center sensor is turned on.

Approaching a sprite

If the Thymio sprite is close to the Pointer sprite and is pointed in the right direction,

Pt I
the robot must approach the sprite. We use = which is similar to the
_’4

forever block in that it causes the blocks contained in its “mouth” to be run again and
again, but it is different in that it has a condition like an if-block. The movement of
the Thymio sprite must stop if the distance to the Pointer sprite is too small and this is

checked by the condition block == ST

Chapter 3

Defining New Blocks

Scratch project: likes

The project likes is similar to obeys except that the Thymio sprite turns towards the
object when one is detected by the left or right sensors and not just by the center sensor:

if center sensor faces Pointer
switch costume to center
go to Pointer
else
if right sensor faces Pointer
switch costume to right
go to Pointer
else
if left sensor faces Pointer
switch costume to left
go to Pointer

In Scratch, we can define new blocks such as Eiaaaad . Once the block is defined,
we can use it to write the script for likes (Figure 3.1).

How do we define the new block? Go to the palette More Blocks and click on

Wake aBlock . Enter the name of the new block, go-to-pointer, in the purple field

in the New block window that is opened. This will create the block

block in the script area and the in the block area for this palette. Now you
can drag-and-drop the blocks required to implement the new block (Figure 3.2).

3@'— Trick
When defining a new block, click on Options and Run without screen re-

fresh. This ensures that the new block is run as one action and the user does
not see the result of running each block in the definition.

The new block EEzgaraal can be used in different scripts and even more than once

in the same script as shown in Figure 3.1. Clearly, this script is much shorter than it
would be if we had to copy the blocks again and again.

10

when I receive Come

if distance to Pointer < &) then

get-pointer—direction
b

if direction-to-pointer < ki and direction-to-pointer > [EEN] then

switch costume to left
L]

go-to-pointer
alse

if direction—to-pointer > 5] and direction—to-pointer {m then

switch costume to right
L]

go-to-pointer

direction—to—pointer > KkF] or direction—to—pointer < J then

switch costume to center
b

go—to-pointer

Figure 3.1: Script for likes

define 9o to-pointer

point towards Pointer

switch costume to center

repeat until distance to Pointer < m

move 9 steps

Figure 3.2: Definition of the block go-to-pointer

11

Chapter 4

Variables

Using a variable to store a state

In advanced mode, VPL projects can use states to remember situations and values.
There are four elements (“quarters”) to the state block, so there are 16 different states.
Scratch supports variables which can be used to store values. They offer many more
capabilities than VPL states, because there can be as many variables as we want and
each variable can store a large range of values.

Scratch project: tap-on-off-state

Let us implement the project tap-on-off from the tutorial. Clicking on the Thymio sprite
will turn the top light on if it is off and turn it off if it is on. A variable will remember
the current state on or off. First, we declare the variable. Go to the Data palette and

click MakeaVvarable ; ojve the variable a name that makes clear what its purpose is. An
oval block with the variable’s name appears, together with some new blocks:

» D

change state by n

¥ Displaying the value of the variable
The check next to the variable block is used to indicate that you want the
variable and its current value to be displayed on the stage.

We need to initialize the variable in the script that is run when the green flag is clicked.
This gives the variable a value before it is used for the first time. Here, the block

sets the value to off:

switch costume to blank

set.. state to Eﬂ

12

The following script starts with the block , meaning that it begins
to run when the sprite that contains the script is clicked:

state = [fff] then

- switch costume to red

[switch costume to blank
b

set state to m

It checks the value of the variable state and decides whether to switch the costume
to the red costume or to the blank costume. It also changes the current value of the
variable state to the opposite value.

Using a variable to store a number

Scratch project: count-to-two
Scratch project: count-to-four-binary
Scratch project: add

Variables are commonly used to store numbers. The VPL project count-to-two encoded
the numbers 0 and 1 in states, and later projects counted to 4 and even to 16. We show
how to use variables to count to two in binary, and leave the extension to other numbers
as exercises.

The Thymio robot displays the current state by lighting the diagonal segments of the
circular lights around the buttons. We simulate this by displaying an orange circle

S g
<]I‘/F-\|[>
_.‘/J

There are two aspects to the simulation in Scratch: (1) initializing, incrementing and
checking the variable, and (2) displaying and erasing the orange circle.

13

We first discuss the operations on the variable. The variable is named count and is
initialized to zero in the first script:

when diicked

set count to m

In the second script, the choice whether to display or erase the circle is done in an

if then

if-statement that checks if the value of 229 is 0 or not, using the |~ block:

' display at CDED

erase at @@

set count to @ count + G Innde

If the condition is true, the blocks in the first “mouth” are run; if not, the blocks in the
second “mouth” are run.

The actual display of the circle is done within the two blocks and
whose definition is given below.

The final block of the script is which changes the (numerical) value

in the variable by the amount written in the small square. Here,
adds 1 to the value of (Z229 and then takes the remainder (called mod) by 2. The result
will be either 0 or 1.

& Warning!

Be sure not to confuse with . The first

block ignores the current value in the variable and sets the variable to the
value written in the small square. The second block takes the current value
of the variable, adds the value written in the small square and then sets the
value of the variable to the result of the computation. To subtract a value
from the current value, simply change by a negative number.

14

Drawing on the stage

Scratch supports drawing on the stage using blocks available in the Pen palette. We
will not explain all the blocks here, just the ones used to display and erase the orange
circle.

In the initialization script, m erases existing marks on the stage , if any. The blocks

and contain m which prints the image of the current

costume of the sprite on the stage:

define erase at x 'y

go to x: x y: y

switch costume to off

switch costume to on

& Warning!

Be sure not to confuse sprites and stamps. A sprite is an actor in a Scratch
animation; it has scripts and costumes. When it moves on the stage it does
not leave a mark. The block m makes a mark on the stage; the mark is
the current costume of the sprite that runs the block. The stamp is not an
actor and does not move, and the mark remains on the stage until removed

by running m :

Don’t use the m when you only need to erase one mark such as an orange circle.
Instead, change the costume of the sprite to one that is all white and stamp it in exactly
the same place as the mark of the orange circle.

The block m is used in the initial script because we don’t want to display the sprite,
only the marks that it makes on the stage.

Why two sprites?

There are two sprites in this project: a Thymio sprite (well, only the buttons), and a
circle sprite. The Thymio sprite is the one that is clicked on; it broadcasts a message to
the circle sprite. We don’t want to sense a click on the circle sprite, because it may
not be visible, and we don’t want to stamp the Thymio sprite because we want marks of
the circle, not of the buttons.

15

Parameters

We want to use the blocks and in more than one place

with different values for the positions of the marks. The definitions of the blocks

and declare two parameters called x

and y. When the blocks are used, the x- and y-values of the position need to be
provided in the small squares, just as is done in predefined blocks like .

Within the definition of a block with parameters, the current values of the parameters
are available as oval blocks that can be used like any other variable.

16

Chapter 5

Guided Projects

These projects introduce no new concepts so we present them as a guided projects.

Line following

Scratch project: follow-line

Construct a backdrop with a wide line that represesnts a strip of black tape on the floor:

-/

Next, import the costume called ground:

This costume has two small areas projecting from the front of the robot and is used to
implement the block as described in Appendix A. The block returns in the

variable one of both, left, right, neither depending on which projecting
area is touching the black area on the stage. The Thymio sprite needs one script whose
algorithm is shown in Figure 5.1.

Real robots don’t move straight

From your experience with the Thymio robot, you know that it will not move straight
even if both motors are set to the same power. The wheels and motors are not identical,
the friction may vary, and so on. This noisy behavior is called jitter. Place the following
block before first move block to simulate jitter:

ﬁnl("(rﬁli r-ln-lln degrees

17

initialize the position of the Thymio
forever
call get-touching-block
if is-touching = both
move forward

else
if is-touching = right
turn right
else
if is-touching = left
turn left
else

stop the script

Figure 5.1: Algorithm for line following

The block causes the robot to turn by an angle that is randomly chosen in the range —20
to 20. You will see that the robot moves very erratically, but the algorithm succeeds in
keeping the robot on the line.

Sweeping the floor

Scratch project: sweep

We want the Thymio sprite to traverse the stage so as to cover the whole surface:

In order the evaluate the quality of the sweep, the robot draws a thin red line as it

moves. causes an imaginary pen in the sprite to be lowered “down” so that
it is in contact with the stage. The pen color is set to red.

The simulation could be programmed simply by commanding the sprite to move the
correct distances—280 steps horizontally and 60 steps vertically—turning right and left
by 90° as required. However, there is no way to command the Thymio robot to travel a
certain distance. All we can do is to set the motors to a constant power for a fixed time,
but the speed will not be precisely constant for the reasons mentioned above, so the
distance will not be predictable.

The script shown in Figure 5.2 causes the sprite to move 4 steps at a time. A second

-

s
script (not shown) consists ofa | -’—J block that contains blocks for left and

18

when dlicked

point in direction (ElP

go to x: (G v: €D

Figure 5.2: Sweeping the stage

right turns of 90° with blocks between them. Adjust the durations in the
wait blocks to obtain a good sweep of the stage.

Finite automata

Scratch project: finite-automaton

The finite automata project in the VPL tutorial was inspired by the light-painting
projects described on the Thymio website. The idea is to have the robot sweep over an
area and respond to codes placed on the floor. The code consists of sync (synchroniza-
tion) marks and marks of symbols on the stage. Figure 5.3 shows the stage with 4 rows
of 4 sync marks (the blue circles) and 9 vertical black lines representing the symbol 1.

AL

Figure 5.3: Synchronization and symbol marks

19

The Thymio sprite is required to sweep the stage and record the number of 1’s. (For a
finite automata we need to specify a finite range, such whether the number of 1 symbols
is even or odd. This can be done using the mod operator.)

The sprite can be in three states: (1) it is touching a sync mark alone, (2) it is touching
both a sync mark and the black line encoding 1, and (3) it is touching neither. Use

to detect the blue ball representing the sync marks and
to detect black line representing 1.

To check the behavior of the sprite, display different colored top lights in each state.

& Warning!

The sync marks should be sufficiently far apart so that the Thymio sprite
doesn’t touch two marks at the same time.

Synchronizing the sprites

There will be two sprites: the Thymio sprite that sweeps the floor and decodes the marks,
and a ball sprite that stamps marks on the stage before the Thymio sprite starts to move.
Use messages to synchronize the sprites:

* The Thymio sprite performs initialization and then broadcasts the message draw.

* When the ball sprite receives the draw message, it stamps the marks and then
broadcasts the message go.

¢ When the other scripts in the Thymio sprite receive the do message, they begin the
tasks of sweeping the stage and decoding the marks.

Timed behavior

Scratch project: shy

Specification: If the Pointer is clicked opposite the right sensor, the Thymio sprite turns
until the Pointer is opposite the center sensor and then 4 seconds later turns back.
Similarly, if the Pointer is clicked opposite the left sensor. Be sure that the small red
lights on the left, right and center sensors are turned on and off as appropriate.

Guidance: The behavior for detection by the left and right sensors is the same except
for the costumes. Create a new block turn-and-turn-back with one parameter—the
direction—that includes all the blocks needed to implement the behavior of the Thymio
sprite once the Pointer sprite is detected.

20

Catch the mouse

Scratch project: mouse

Specification:

The Thymio sprite detects a click of the Pointer sprite opposite its left sensor.

It turns left (counterclockwise) until the right sensor points towards the Pointer.

It turns right (clockwise) until the center sensor points towards the Pointer.

* It moves towards the point of the click and then stops.
Guidance:

e Declare a variable that takes four values: search-left, search-right, found, stop.
This variable will take on successive values as it accomplishes each part of the
mission.

¢ The behavior of the Thymio sprite will depend on which state it is in. It is conve-
nient to define new blocks for each state: go-left, go-right, catch-mouse.

21

Chapter 6

Braitenberg Creatures

What are Braitenberg creatures?

Valentino Braitenberg was a neuroscientist who wrote a book describing the design of
virtual vehicles which exhibited surprisingly complex behavior.! Braitenberg’s vehicles
have been widely used in educational robotics. Researchers at the MIT Media Lab
created hardware implementations of the vehicles called Braitenberg creatures.> The
vehicles were build from programmable bricks that were the forerunner of the LEGO
Mindstorms robotics kits.

This document describes an implementation in Scratch of most of the Braitenberg
creatures from the MIT report. The implementation is based upon a simulation in
Scratch of the Thymio robot using the VPL programming environment. It is intended
to be used as an introduction to Thymio / VPL for students with experience in Scratch.

The MIT hardware used light and touch sensors, while the Thymio robot relies primarily
on infrared proximity sensors. To enable comparison with the MIT report, the names of
the creatures used there have been retained, even though they may not be appropriate
for the Thymio implementations. The order of presentation from the report has also
been retained, although this does not correspond to the difficulty of implementation in
either Scratch or VPL.

V. Braitenberg. Vehicles: Experiments in Synthetic Psychology (MIT Press, 1984).
’David W. Hogg, Fred Martin, Mitchel Resnick. Braitenberg Creatures. MIT Media Laboratory, E&L
Memo 13, 1991. http:/ /cosmo.nyu.edu/hogg/lego/braitenberg_vehicles.pdf.

22

http://en.wikipedia.org/wiki/Valentino_Braitenberg
http://cosmo.nyu.edu/hogg/lego/braitenberg_vehicles.pdf

Overview

The project template contains the necessary sprites, the costumes and the outline of the
scripts. The Braitenberg projects can be built starting with this project.

The Thymio robot is simulated by a sprite called Thymio that appears on the screen as:

The sprite has seven costumes: the blank costume shown above; four costumes (center,
right, left, rear) with the corresponding sensors lit, and two (red, green) with the top
lights turned on.

The Thymio sprite detects an object when the mouse pointer is close to the sprite. A new
block called get-pointer-direction returns in the variable direction-to-pointer the
angle from the sprite to the mouse pointer.®> Zero degrees is the direction that the
Thymio faces and the angles increase clockwise. The following test script in the template
project demonstrates how the simulation works:

when

point in direction @

g0 to x: EED v: ©@

switch costume to blank

if distance to mouse-pointer < then

get-pointer—direction
13
say direcBon-to-pointer

[= =

Start the program by clicking on the green flag. If the mouse pointer is near the Thymio
sprite, the sprite says the direction to the pointer.

3The implementation is described in Appendix A, except that the direction is to the mouse pointer and
not to a pointer sprite.

23

Specification of the creatures

Timid When the robot does not detect an object, it moves forwards. When it detects
an object, it stops.

Indecisive When the robot does not detect an object, it moves forwards. When it
detects an object, it moves backwards. Experiment with the definition of the
distances for “detect” and “not detect” so that the robot oscillates: move forwards
and backwards in succession.

Paranoid When the robot detects an object, it moves forwards. When it does not detect
an object, it turns to the left.

Paranoidl When an object is detected by the center sensor of the robot, it moves
forwards. When an object is detected by the right sensor, it turns right. When an
object is detected by the left sensor, it turns left.

Dogged When the robot detects an object in front, it moves backwards. When the
robot detects an object in back, it moves forwards. When an object is not detected,
it stops.

Insecure If an object is detected by the left sensor, the robot turns right. If an object
is not detected by the left sensor, it turns left. Experiment with the angles of the
turns until the robot can track the mouse pointer placed ahead and to its left.

Driven If an object is detected by the left sensor, the robot turns left. If an object is
detected by the right sensor, it turns right. The robot will approach the mouse
pointer in a zigzag.

Persistent The robot moves forwards until it detects an object. It then moves back-
wards for one second and reverses to move forwards again.

Attractive and repulsive When an object approaches the robot from behind, the robot
moves forward until the object is no longer detected.

Consistent The robot cycles through four states when it is clicked on: moving forwards,
turning left, turning right, moving backwards.

Frantic The top light flashes red.

Observant The robot turns the top light green when the right sensor detects an object.
The robot turns the top light red when the left sensor detects an object. Once a
light is turned on, the robot waits three seconds before turning off; during this
period, the light does not change.

24

Appendix A

Implementation

This Appendix explains advanced programming techniques in Scratch that were used
in the simulations of the Thymio robot. The details are encapsulated in sprites and
new blocks so that the student need not be concerned with them, but the Appendix can
serve are a tutorial to these programming techniques.

The Pointer sprite

The touching blocks from the Sensing palette are used to detect events. They are
condition blocks that return true if the sprite running the script where the block appears
touches something else.

. returns true if the sprite is touching another sprite or the
mouse pointer.

o - -0 Ly returns true if the sprite is touching an area with this color.

. returns true if an area on this sprite with the first color is
touching an area with the second color.

-@'— Trick
To set the color, click the little square, move the mouse pointer and click an
area on a sprite or the backdrop that has the color you want.

Scratch does not support checking if the mouse pointer is touching a color; therefore, we
define a sprite called Pointer that tracks the location of the mouse pointer (Figure A.1).
The costume of this sprite is a very small gray dot that the user will not see.

To simulate the buttons on the Thymio robot, the image of the Thymio sprite has different
colors for each button. When the Pointer sprite is clicked, the script in Figure A.2
checks if it is touching one of the colors and broadcasts the appropriate message.

Computing the direction to the Pointer sprite

Many projects require that the direction from the Thymio sprite to the Pointer sprite be
determined. The implementation of the block is shown in Figure A.3.

25

go to mouse-pointer

Figure A.1: Tracking the mouse pointer

if

[broadcast front and wait

if

fl:rnalll:ast back and wait

[

broadcast center and wait

Figure A.2: Sensing a click on the buttons

The variable € is used internally by this block, and the variable
is used to return the direction to the calling sprite. Extensive use is made of the block
which is predefined in the Motion palette and gives the current direction in
which the sprite is pointing.

The current direction in which the sprite is pointing is saved in CI=). Then, the
Thymio sprite is turned so that it points to the Pointer sprite. The block now
contains this new direction. By subtracting the value in £5ta9 we get the difference

between the two directions. The if-block ensures that this direction is positive between
0 and 360. Finally, we turn the Thymio sprite to point in its original direction which was

stored in).

Simulating the botton sensors

To simuate the bottom sensors, create a new costume for the Thymio sprite with light-
colored areas projecting out in front of the image:

26

define 9et-pointer-direction

set save-dir to direction

point towards Pointer

set direction-to-pointer to direction - sawve—dir

if direction-to-pointer < [i] _ then

change direction-to-pointer by

point in direction | sawe—dir

Figure A.3: Get the direction to the Pointer sprite

define oet-touching

if color] is touching ? and color J]is touching
| sat is-touching o LI
else
if color] is touching

sat is-touching to 4

else
if color [is touching
| set is-touching to
else
set is-touching to

Figure A.4: Simulation of the ground sensors

Now declare a variable and define the block (Figure A.4), which

returns in one of both, left, right, neither depending on which projecting
area is touching the black area on the stage.

27

	Preface
	Programming with Events
	Moving Sprites
	Defining New Blocks
	Variables
	Guided Projects
	Braitenberg Creatures
	Implementation

